Newton-Krylov Solves in NIMROD

Carl Sovinec
University of Wisconsin-Madison

Pre-Sherwood CEMM Meeting
May 2, 2009
Denver, Colorado

Outline

- Algebraically nonlinear terms in implicit leapfrog
- Newton iteration
- Convergence criteria
- Other possible improvements
- Summary

In the present implicit leapfrog, advection and Hall-E are centered only approximately.

Velocity advance:

$$m_{\mathbf{i}} n^{j+1/2} \left(\frac{\Delta \mathbf{V}}{\Delta t} + \frac{1}{2} \mathbf{V}^{j} \cdot \nabla \Delta \mathbf{V} + \frac{1}{2} \Delta \mathbf{V} \cdot \nabla \mathbf{V}^{j} \right) - \Delta t L^{j+1/2} (\Delta \mathbf{V}) + \nabla \cdot \Pi_{\mathbf{i}} (\Delta \mathbf{V})$$
Newton-like step staggering-centered
$$= \mathbf{J}^{j+1/2} \times \mathbf{B}^{j+1/2} - m_{\mathbf{i}} n^{j+1/2} \mathbf{V}^{j} \cdot \nabla \mathbf{V}^{j} - \nabla \left[n^{j+1/2} \left(T_{e}^{j+1/2} + Z^{-1} T_{i}^{j+1/2} \right) \right] - \nabla \cdot \Pi_{\mathbf{i}} \left(\mathbf{V}^{j} \right)$$

Number density advance:

$$\frac{\Delta n}{\Delta t} + \frac{1}{2} \nabla \cdot \left(\mathbf{V}^{j+1} \cdot \Delta n - D \nabla \Delta n \right) = -\nabla \cdot \left(\mathbf{V}^{j+1} \cdot n^{j+1/2} - D \nabla n^{j+1/2} \right)$$
staggering-centered predict/correct if nl coefficient

For the magnetic advance, the time-averaged *n* is known.

Temperature advances:

$$\frac{3\overline{n}}{2} \left(\frac{\Delta T_{\alpha}}{\Delta t} + \frac{1}{2} \mathbf{V}_{\alpha}^{j+1} \cdot \nabla \Delta T_{\alpha} \right) + \frac{\overline{n}}{2} \Delta T_{\alpha} \nabla \cdot \mathbf{V}_{\alpha}^{j+1} + \frac{1}{2} \nabla \cdot \mathbf{q}_{\alpha} (\Delta T_{\alpha})$$

$$= -\frac{3\overline{n}}{2} \mathbf{V}_{\alpha}^{j+1} \cdot \nabla T_{\alpha}^{j+1/2} - \overline{n} T_{\alpha}^{j+1/2} \nabla \cdot \mathbf{V}_{\alpha}^{j+1} - \nabla \cdot \mathbf{q}_{\alpha} (T_{\alpha}^{j+1/2}) + Q_{\alpha}^{j+1/2}$$

Magnetic advance:

$$\frac{\Delta \mathbf{B}}{\Delta t} - \frac{1}{2} \nabla \times \left(\mathbf{V}^{j+1} \times \Delta \mathbf{B} \right) + \frac{1}{2} \nabla \times \frac{1}{\overline{n}e} \left(\mathbf{J}^{j+1/2} \times \Delta \mathbf{B} + \Delta \mathbf{J} \times \mathbf{B}^{j+1/2} \right) + \frac{1}{2} \nabla \times \eta \Delta \mathbf{J}$$
stagger

Newton-like
$$= -\nabla \times \left[\frac{1}{\overline{n}e} \left(\mathbf{J}^{j+1/2} \times \mathbf{B}^{j+1/2} - \overline{T}_e \nabla \overline{n} \right) - \mathbf{V}^{j+1} \times \mathbf{B}^{j+1/2} + \eta \mathbf{J}^{j+1/2} \right]$$

Correct after **B** advance.

The discrepancies from nonlinear centering are small, but they may affect nonlinear stability.

- The momentum-density advection and Hall terms are among the hyperbolic parts of the system.
- Analysis for linear waves shows that these terms must be timecentered for numerical stability.

V-advance: solution field is ΔV , and nonlinearly centered advection is

$$m_{\mathbf{i}}n^{j+1/2}\left(\mathbf{V}^{j}+\frac{1}{2}\Delta\mathbf{V}\right)\cdot\nabla\left(\mathbf{V}^{j}+\frac{1}{2}\Delta\mathbf{V}\right)$$

B-advance: solution field is Δ **B**, and nonlinearly centered Hall is

$$\nabla \times \left\{ \frac{1}{\mu_0 \overline{n} e} \left[\nabla \times \left(\mathbf{B}^{j+1/2} + \frac{1}{2} \Delta \mathbf{B} \right) \right] \times \left(\mathbf{B}^{j+1/2} + \frac{1}{2} \Delta \mathbf{B} \right) \right\}$$

Both terms are bilinear, and minor changes allow iteration.

With N being either operator, and the superscript *j* indicating the time level at the start of an advance,

$$N\left(X^{j} + \frac{1}{2}\Delta X, X^{j} + \frac{1}{2}\Delta X\right) = N\left(X^{j}, X^{j}\right) + \frac{1}{2}\left[N\left(X^{j}, \Delta X\right) + N\left(\Delta X, X^{j}\right)\right] + \frac{1}{4}N\left(\Delta X, \Delta X\right)$$
explicit linearly implicit new

To iterate with minimal changes, let ΔX_k be the k-th iteration for $X^{j+1}-X^j$.

$$L(\Delta X_k) + \frac{1}{2} N \left(X^j + \frac{1}{2} \Delta X_{k-1}, \Delta X_k \right) + \frac{1}{2} N \left(\Delta X_k, X^j + \frac{1}{2} \Delta X_{k-1} \right)$$

$$= -N \left(X^j, X^j \right) + R^j + \frac{1}{4} N \left(\Delta X_{k-1}, \Delta X_{k-1} \right) ,$$

where L is linear and remaining RHS is R, is equivalent to Newton:

$$F(\Delta X_{k-1}) + \frac{\delta F}{\delta \Delta X}\Big|_{\Delta X_{k-1}} (\Delta X_k - \Delta X_{k-1}) = 0$$
 for $F = L + N - R$

Coding changes are minimal.

- Loop around linear solve.
- Reuse original RHS, $-N(X^j, X^j) + R^j$ and add $\frac{1}{4}N(\Delta X_{k-1}, \Delta X_{k-1})$.
 - There are new RHS integrands.
- When performing each matrix-free linear solve, use the last iterate, $X^j + \frac{1}{2}\Delta X_{k-1}$, in the linearized terms.
- Save ΔX_k as the guess for the next linear solve.
- Find $\frac{1}{4}N(\Delta X_k, \Delta X_k)$ and test for convergence.

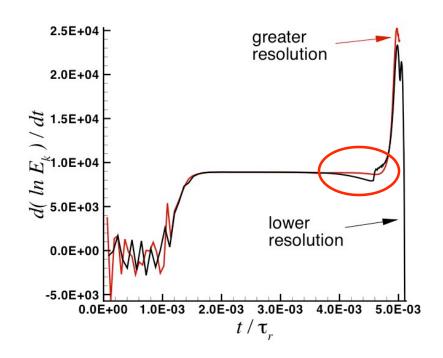
$$\frac{\frac{1}{4} \| \mathbf{N}(\Delta X_k, \Delta X_k) - \mathbf{N}(\Delta X_{k-1}, \Delta X_{k-1}) \|}{\| R^j - \mathbf{N}(X^j, X^j) \|} \leq tolerance$$

For bilinear N, numerator = norm of nonlinear residual (using last Newt. it.)

- First test cases do not show significant changes.
- Computational cost is about 15%.

Other possible developments: two-fluid internal kink may benefit from 3D linear force operator.

- Time step in nonlinear twofluid internal kink computations has been limited for accuracy.
- Before the crash, the evolution is quasi-static, so the largest truncation error is likely in the force-balance.



- First case has a 20×20 mesh, degree of polynomials is 8, and $0\le n\le42$.
- Second case has a 24×32 mesh, degree of polynomials is 8, and $0\le n\le85$.
- The computations limit Δt by nearly 2 orders of magnitude from linearly accurate Δt before the crash. Minimum CFL is ~600.

A 3D linear force operator can be used in the matrixfree velocity operation.

- It will be similar to other 3D operators, except test-function terms are more complicated.
- After integration by parts, MHD wave terms include

$$\int \nabla \times (\mathbf{A}_{V}^{*} \times \mathbf{B}) \cdot \nabla \times (\Delta \mathbf{V} \times \mathbf{B}) dVol$$

where **B** is 3D.

- Dot product in integrand should be done in real space.
- Transform of $\nabla \times (\mathbf{A}_{\nu}^* \times \mathbf{B})$ is needed for the three *vector* test functions \mathbf{A}_{r} , \mathbf{A}_{z} , and \mathbf{A}_{ϕ} .

Conclusions

- Newton-Krylov iteration for the implicit leapfrog is practical and has been implemented.
- More testing is needed to evaluate its importance.
- A 3D linear ideal MHD force operator is being considered.